Visualization of Large, Time-Dependent, Abstract Data with Integrated Spherical and Parallel Coordinates
نویسندگان
چکیده
Parallel coordinates is one of the most popular and widely used visualization techniques for large, high dimensional data. Often, data attributes are visualized on individual axes with polylines joining them. However, some data attributes are more naturally represented with a spherical coordinate system. We present a novel coupling of parallel coordinates with spherical coordinates, enabling the visualization of vector and multi-dimensional data. The spherical plot is integrated as if it is an axis in the parallel coordinate visualization. This hybrid visualization benefits from enhanced visual perception, representing vector data in a more natural spatial domain and also reducing the number of parallel axis within the parallel coordinates plot. This raises several challenges which we discuss and provide solutions to, such as, visual clutter caused by over plotting and the computational complexity of visualizing large abstract, time-dependent data. We demonstrate the results of our work-in-progress visualization technique using biological animal tracking data of a large, multi-dimensional, time-dependent nature, consisting of tri-axial accelerometry samples as well as several additional attributes. In order to understand marine wildlife behavior, the acceleration vector is reconstructed in spherical coordinates and visualized alongside with the other data attributes to enable exploration, analysis and presentation of marine wildlife behavior.
منابع مشابه
COORDINATE INFLUENCE ON SINGULARITY OF A 3-UPS PARALLEL MANIPULATOR
This paper shows the coordinates influence on singularity of a three degree-of-freedom structure, namely, three-Universal-Prismatic-Spherical (3-UPS) parallel manipulator. Rotational coordinates, which are chosen to define the orientation of the platform, affect the singularity of the manipulator. Euler parameters, which don't have any inherent geometrical singularity are utilized, however they...
متن کاملUsing Penalized Regression with Parallel Coordinates for Visualization of Significance in High Dimensional Data
In recent years, there has been an exponential increase in the amount of data being produced and disseminated by diverse applications, intensifying the need for the development of effective methods for the interactive visual and analytical exploration of large, high-dimensional datasets. In this paper, we describe the development of a novel tool for multivariate data visualization and explorati...
متن کاملPath Line Attributes - an Information Visualization Approach to Analyzing the Dynamic Behavior of 3D Time-Dependent Flow Fields
We describe an approach to visually analyzing the dynamic behavior of 3D time-dependent flow fields by considering the behavior of the path lines. At selected positions in the 4D space-time domain, we compute a number of local and global properties of path lines describing relevant features of them. The resulting multivariate data set is analyzed by applying state-of-the-art information visuali...
متن کاملEfficient Information Visualization of Multivariate and Time-Varying Data
Data can be found everywhere, for example in the form of price, size, weight and colour of all products sold by a company, or as time series of daily observations of temperature, precipitation, wind and visibility from thousands of stations. Due to their size and complexity it is intrinsically hard to form a global overview and understanding of them. Information visualization aims at overcoming...
متن کاملSolving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs
Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012